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1. Introduction

IN [3, Section D3], Richard K. Guy asks for the existence of nontrivial

solutions of the diophantine equation ( ) = f j , other than f j =

( 1 = 210 (note that the trivial solutions are ( 0 ) = ( /1) = l an(^

/ 6 \ / 6 \
1 1 = 1 I = 15). In this note we will answer this question, by proving the

following result.

THEOREM 1. The only (n,m)eZ2 with n^2 and m5=4 satisfying

© = ( 7 ) a r e {n> m)=(2> 4)> (6> 6)> and (21> 10)-
Our binomial diophantine equation represents an elliptic curve, since it

can be rewritten as a quartic polynomial being a square. Indeed, on
putting u = 2/i - 1 and v = 2m - 3, we see at once that Theorem 1
follows from the following result.

THEOREM 2. The only (u, v) e Z2 with u^O and v s= 0 satisfying

48u2 = v* - 10u2 + 57 (1)

are (u, v) = (1, 1), (1, 3), (3, 5), (11, 9), and (41, 17).

The elliptic curve defined over Q represented by equation (1) has rank
2. However, we will not make use of "geometric" properties of this
curve, but use only the "algebraic" properties of the equation. The
"geometric" approach to quartic equations described by Tzanakis [5] will
most probably lead to an efficient alternative way of proving our results.

In Section 2 we will show that Theorem 2 is a consequence of the
following result.

THEOREM 3.
(i) The only (x, y) e Z2 satisfying

x4 + I6x3y - 6x2y2 + 304xy3 + 361y4 = m (2)
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with m e {1, 4, 9, 36} are (x, y) = ±(1, 0) with m = 1, and (x, y) = ±(1, -1)
with m = 36.
(ii) The only (x, y) e Z2 satisfying

3x* + 4Sx3y + 302xV + 912xy3 + 1083/ = m (3)

m e {3, 12} are {x, y) = ±(1,0) and ±(6 , -1) wi//i m = 3 , and
(x, y) = ±(3, -1) with m = 12.

In Section 3 we will prove Theorem 3 using the method described in
[6]. We will use the transcendence result of Baker and Wtlstholz [2], that
yields absolute upper bounds for x,y of the size of 102*10". In fact, for the

solutions of ( ) = I J we obtain the upper bounds m < 102x10" and

n < 104xl°17. Computational diophantine approximation methods are then
used to search in a very efficient way for the solutions below these
bounds.

It might be possible to find a proof of Theorem 3 that avoids the deep
results of transcendence theory completely, following the line of argu-
ment of [4, Section 4]. This would lead to an 'elementary' solution of

I I = ( 1, and we leave this as a challenge to the reader.

Note that the equation f ] = f j defines an elliptic curve also. This

equation has been solved by Avanesov [1]. We refer to [3, Sections B31,
D3] for other results and references to papers on binomial diophantine
equations.

In May 1995 A. Pintei informed me that he obtained the same results
as we did, by essentially the same method. His paper will appear in Publ.
Math. (Debrecen).

2. Proof of Theorem 2

In this section we derive Theorem 2 from Theorem 3. Write equation
(l)as

48M2 = (v2 - 5)2 + 32,

and factorize over Q(V—2). A common divisor of v2 - 5 + 4V-2 and its
complex conjugate also divides their difference 8V—2. Since 3 splits as
3 = (1 + V=2)(l - V^) we obtain

v2 - 5 + 4V r r2 = ( - l y t V ^ ' X l + V^2)c(l - V^lfiA + BV=2)2, (4)

where a,b,c,d e {0, 1}, and A,B E Z. Taking norms in (4) we find from
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(I) that 2blc+d is 3 times a square, hence b = 0, and (c, d) = (1, 0) or
(c, rf) = (0, 1).

77ie case (c, d) = (1, 0). In this case we derive from equating real and
imaginary parts in (4) the following system:

v2-5 = (-iy(A2-4AB-2B2), (5)

4 = (-l)°(A2 + 2AB-2B2). (6)

Equation (6) implies that A is even, and subsequently that B is even.
Equation (6) is solvable modulo 3 only if a = 0. So on putting A = 2C,
B = ID, and adding 5 times (6) to (5), we find

v2 = 9C2 - 6CD - 18£>2, (7)

1 = C2 + 2CD - 2D2. (8)

Equation (7) can be written as

(3C-D + v)(3C -D-v) = 19D2,

so we can factor over Z. Let p be a prime dividing 3C - D + v and
3C - D - v. It p *£ 2 and p ¥> 19 then p \ 3C - D and p \ D, and since by
(8) gcd(C, D) = 1, we have p = 3. It follows that there are e,f,g,h e {0, 1}
and E,F e Z with

/ (9)
2, (10)

D = ±2fyEF. (11)

For symmetry reasons (the signs of C,D,u,v are irrelevant, and £ and F
may be interchanged) we may assume without loss of generality that
e=h = 0, and that in (11) the ± is + . Hence from the system (9), (10),
(II) we derive

C = 2f-ly-\E2 + 2EF + 19F2),

and substituting this and (11) into (8) we obtain equation (2) with x = E,
v = F, and m = 22'2f32~2g e {1, 4, 9, 36}.

The case (c, d) = (0, 1). In this case we derive from equating real and
imaginary parts in (4) the following system:

B2), (12)

2B2). (13)

Equation (13) implies that A is even, and subsequently that B is even.
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Equation (13) is solvable modulo 3 only if a = 1. So on putting A = 2C,
B = 2D, and adding 3 times (13) to (12), we find

v2 = C2 - 26CD - ID2, (14)

1 = C2 - 2CD - 2D2. (15)

Equation (14) can be written as

(C - 13D + v)(C - 13D - v) = 3219D2,

so we can factor over Z. Let p be a prime dividing C -13£> + v and
C - 13D -v. If /? # 2, p * 3 and p ^ 19, then /> | C - 13D and p\D,
which is impossible, since (15) implies gcd(C, D) = 1. It follows that there
are e,f,g,h e {0, 1} and E,F e Z with

C - 13£> + v = ( - l j ' ^ y i ^ f ? , (16)

C-13D- t ; = (-l)'2/3«191-'IF2
) (17)

D = ±2f3*~1EF. (18)

For symmetry reasons (the signs of C,D,u,v are irrelevant, and E and F
may be interchanged) we may assume without loss of generality that
e = h = 0, and that in (18) the ± is + . Hence from the system (16), (17),
(18) we derive

C = 2/-13*"1(3£2 + 26£F + 57F2),

and substituting this and (18) into (15) we obtain equation (3) with x = E,
y = F, and m = 22~2f3i~2g. By m e Z it follows that g = 0, and we have
m e {3,12}.

Now clearly Theorem 3 implies Theorem 2.

3. Proof of Theorem 3

We start with studying quartic fields. Let 9U 92be roots of

6\ + 1Q\ - 2 = 0, 6̂  - 20| - 2 = 0.
Put

«Ai = - 7 + 80, - 30] + 2d\, ip2 = (-11 - 802 - e2, + 20l)/3,

then

(pi + 16(p\ - 6(p2 + 304^! + 361 = 0,

3i/4 + 48i/4 + 302^1 + 912(P2 + 1083 = 0.

Let IK, = Q(0,) for i = 1,2. Both these fields are half-real, have
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discriminant - 4608 = -2932 , integral basis {1, dlt (tf, 0?}, trivial class
group, and Galois group D8. Nevertheless they are not isomorphic
Fundamental units of IK, are et, -q,, given by

e1 = i - e2, 77, = i + eu

The prime ideal decompositions of the primes 2 and 3 in the fields IK, are
as follows:

in K,: (2) = (0O4, (3) = (1 + e\f,

in K2: (2) = {62)\ (3) = (1 + 62)\\ - 82)
2.

Complete sets of non-associated integral elements /ij e Kx of norm
m e {1, 4, 9, 36} are given by

^i = l if m = 1, ^i = l + 0j if m = 9,

Mi = 0i if m = 4, /u,j = 2 - B\ if m = 36.

Note that the denominator of ip2 is 1 - d2. Complete sets of non-
associated elements fi2 e IK2 of norm \m e {1, 4} and with denominator 1
or 1 - 62 are given by

l + 62
fx2 = l or fi2 = -—— if m = 3,

i - v2

1 + 6
iL2 = &i or M2 = - — ^ 0 | if m = lZ

1 - 02

Put /3/ = x - yif/i for i = 1,2. Now it follows that the Thue equations (2)
and (3) are equivalent to

A = ±/*,ef TJ{ (19)

for unknown &,/ e Z, with i///, (JL,, eh TJ, as described above, for i e {1, 2}.
We denote the real conjugates of some a e IK, by a(1), a(2), and the

non-real conjugates by a(3), a(4). We take the conjugates so that 0\l)>0,
and Im 9\3) > 0. For convenience we will often suppress the lower index /.

Let /,;' e {1, 2} be such that

l < liB^I •

The Siegel identity for the ;'th, 3rd and 4th conjugates is
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Dividing the second term and substituting the 3rd and 4th conjugates of
(19), we obtain

ft"

Note that e(3) = e(4) for both i = 1,2, that /A{3) = /4 4 ) for all possibilities

/43) /I + 0?Y
for /ij , that for — ĵ there are only two possibilities: 1 or I-——^J .
Further note that all the quotients in the left hand side of (20) are
quotients of complex conjugates. So put

Here we take the principal value of the logarithm, so that ph r e -n, n\.
We give some idea of the numerical values:

if i = 1 then T = 2.05341..., p , = -2.13977.. . , p 2 = -0 .44585. . . ,

i f / = 2 then T = - 0 . 9 1 7 6 4 . . . ,

i f ^ = 1 then p, = 1.62687..., p j = - 2 . 9 6 2 3 9 . . . ,

) then P l = -1.82536,. . . p 2 = -0 .13145. . . .

Put

where we take z e Z such that Aj e (—71, n\ Now the left hand side of
(20) can be written as e v r T A>-l . Note that | z | « l + J|/|, so that
max{|/|, \z\} = \l\ unless / = 0. In the sequel we will assume that / ^O and
that |^| s= 1.

The theory of linear forms in logarithms of algebraic numbers tells us
that Ay cannot be near to zero. In fact, the sharp result of Baker and
Wtlstholz [2] yields (unless / = 0)

|A,|>exp(-C0log|/ |) (21)

for a positive constant Co to be given below.
On the other hand, we can follow the arguments of [TdW], and derive

an upper bound for |Ay|, namely

|A, |<C,exp(-C2 | / | ) (22)

for positive constants CUC2, to be given below. Now, combining (21) and
(22) we find an absolute upper bound C3 for |/|.

We give the details of the calculation of these constants in an appendix
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to this paper. The constants are different in three cases:

case I: i = 1,

M3 )
case Ha: / = 2 and —?TJ= 1,

case lib: i = 2 and *-^ =

We found the values given in the following Table.

case Co C,

I 1.61069 X1016 10580.360 2.553736 2.52774 X1017

Ila 1.90462 X1016 49.881773 3.7556315 2.02082 X1017

lib 4.09018 X1016 823.56656 3.7556315 4.42507X1017

It's not too hard to show that these upper bounds for |/| lead to the
upper bounds m < 102*10" and n < 1O4X10" for the solutions of

( J = f J. Qearly for attempting a direct search these bounds are way

too large. Therefore, to find the solutions below these bounds we will
work again with the linear forms Ay. We follow the path of [6] further,
and reduce the upper bound C3 for |/| to a much friendlier size, by using
computational lattice base reduction techniques. This we will show to be
possible within a few seconds of computational time.

Take a large enough positive constant C, of the size of C\. Consider
the lattice

(where [•] means rounding to an integer), and define

By a variant of the euclidean algorithm it is not difficult to compute the
distance dt between the point

P ^-[cPi]
and the nearest point in the lattice P. If C is taken large enough, then we
might expect that

and in that case we can make the following estimates. Because
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(I) » a difference vector of a lattice point and the point P, we find
2. By the definition of Ay we have |Ay - CAy| « 1 + |/| + |z| «

2 + \Ci, so that

|Ayl>^(V5^Ci- (2 + ̂ C3)). (23)

Once we have found this very explicit numerical lower bound for |A;|, we
can use (22) to give a new upper bound for |/|.

Initially we took C = 1037. Note that we need the values of pjt x, 2n to
at least 37 decimal places behind the decimal point, and that we have to
use multi-precision routines. This yielded:

in case I: dx > 7.20291 X 1018, d2 > 7.45412 X 1018, |/|=s20,
incasella: rf, > 8.32804 X 1018, d2> 1.04835 X 1019, |/| =s 12,
in case lib: d, > 7.36079 x 1018, dz > 9.43324 x 1018, |/|«12.

Then we took C = 104 with the new upper bounds as C3. This yielded:

in case I: d, >50.9901, d2>93.9414, | / |«6,
incasella: ^ > 79.3095, d2> 85.7962, |/|=£2,
in case lib: dx > 98.0204, d2 > 85.2877, |/| =s 3.

Total computation time is to be measured in seconds only on a 486/33
personal computer.

Only a few cases remain to be checked, namely those with |/| =£ 6, 2 or
3, and those with y = 0. This can be done by hand. There are only the
following solutions.

/ n k I z j (x,y)

1

2

1
2

1

1
1 H
1 -

1
02

+ 02

- e 2

l
02

+ 0
- 0

K 0 -

-0

0
none
none

1

0
none

- 2

- 1

0

- 2

0

- 2

0

0

- 1

0

0

0

1,2

1

U

1

'• 2

±(1

±(1,

±(1

±(6,

±(3,

,0)

- 1 )

,0)

- 1 )

- 1 )

This completes the proof of Theorem 3, hence of Theorems 1 and 2.
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Appendix

In this Appendix we give details of the calculations of the constants
Co,C1,C2)C3 in the three cases I, Ila, l ib. We start with calculating Co.

We apply the main result of [2], which reads

Co = 18(H + l)\nn+\32d)n+2log(2nd)h'(pj)h'(T)h'(l),

with in our case the number of terms in Ay being n = 3, the field degree
being d = 8, and for the heights we computed h'(l) = J, and

in case I: /i'(pO = /i'(p2) = 1.355292..., h'(f) = 0.638343.. . ,

in case Ila: A'(p,) = h'(p2) = 1.089584..., h'{t) = 0.938907.. . ,

in case lib: h'(px) = h'(p2) = 2.339887.. . . h ' (r) = 0.938907... .

This immediately led to the values for Co given in the paper. Note that

Then we calculate CltC2. We will estimate the conjugates of /3 in
absolute value from below and above. Using the definition of j,j', the fact
that (19) implies

A { t ) _ _ f m E {1, 4, 9, 36} in case I

t_i Q l^m e {1, 4} in cases Ila, Lib

and using the assumption that |y| > 1, we have

[4.1915652 |y| in case I
"•V l" ' ".6991607 \y\ in cases Ila, l i b '

I I a > nb
0.25304633 |y|"3 in case I

0.39295925 \y\~3 in cases Ila, lib '

1873361 ^1 in

max |^3> - ^ ) , + 1 ^ | ,y,3) , , | < (1W11988 \y\ in case I
1^ ^ ' I P M K l I y i

( 1
14.11074722 |y| in cases Ila, l i b '

f0.00016471836|yr3incasel

|/3W>)| |^(3)|2 > 10.018596143 l yp 3 in cases Ila, lib '
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Consequently, we find from (20) that

f0.10590719|>-r4incaseI
w _ 0<3> | 100)

which by \y\ > 1 leads to

r0.
10.29000349 |y|-^ in cases Ila, lib '

. . . [0.10595675 |>-|-4 in case I
^ 1 0 . 2

From (19) we derive

(k\(\og\e"\
\lJ Vlog|e(2)| log|77(2>|

.29102947 \y\~4 in cases Ila, lib '

- log |

and because c(1) = e(2) we find

/ = • log

from which we derive

(log P
pU) log

.(2)

So for our three cases we find

(24)

4.5083406 + 1.5665549 log \y\ in case I
1.3696728 + 1.0650672 log \y\ in case Ila

L2.1162819 + 1.0650672 log \y\ in case lib

Combined with (24) this yields the values for Cx and C2 given in the
paper.

Now combining (21) and (22) we find the given values for C3.
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